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This thesis presents an analysis of an electrohydraulic servo actuator.  A fully 

nonlinear model of an electrohydraulic actuator has been created in Simulink to 

fully model the dynamics of the entire system.  The entire system was modeled 

and variables were estimated, due to the inability to accurately measure the actual 

values.  Validation steps including step response, frequency response, and 

literature verification were performed on the model to verify the accuracy of the 

model.  The model provides the unique advantage of being able to capture the 

nonlinearity of an electrohydraulic system including the servovalve whose 
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dynamics usually are ignored or approximated.  This system is dependent on the 

values chosen and exhibits typical nonlinearities, which allows this model to be 

used for other electrohydraulic actuators after tuning the variables to match the 

response of a system.  The full nonlinearity and modeling approach allows the 

response of any aspect of the system to be analyzed, increasing the value this 

model has over other model examined in the literature review.  Three controllers 

were analyzed; a PID with anti-windup, full state feedback with state estimators, 

and a hybrid PI full state feedback, with regards to the nonlinear system.  Due to 

the large order of magnitudes found in the transfer function of the plant, 

additional procedures had to be developed to analyze and design controllers with 

the state space representation.  Equations were developed to create state feedback 

and estimator gains based off of scaled step responses.  These equations can be 

used when numerical issues arise from traditional pole placement techniques.  In 

addition to improving the response time by looking at the settling time, the three 

controllers that were also analyzed based on the resulting input signal to the plant.  

Lastly the three controllers are also based on their ability to reject a pulse 

disturbance added after the controller. 
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Chapter 1 Introduction and Literature Review 

 

1.1 Introduction 

 

In control systems, typically the primary objective is to improve the response of a 

certain task.  This can be accomplished through better tracking or a quicker 

response time.  In most control systems, having a complete understanding of the 

system or plant that is being controlled is of the utmost importance.  Typically, 

the equations that define the system are put into either state space form, or as a 

transfer function.  For both cases, the dynamic equations need to be linear or 

linearized to be put into the forms mentioned above.  In addition, the dynamic 

equations need to accurately define the system.   

 

The controller, typically, is designed and then digitally implemented.  If any 

unexpected behavior occurs during the digital implementation, the system is 

manually tuned to adjust for the uncertainties in the original system equations 

developed.  To improve the usefulness of the controller designed for the given 

plant equations, robustness can be introduced into the controller design.  This can 
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be in the form of a H∞ controller or through introducing uncertainty into the 

system equations [1].  In addition to modeling uncertainties, problems can also 

become evident when the continuous controller is converted into a digital 

controller in the form of continuous to discrete conversions. 

 

For the modeling and control of an electrohydraulic servo actuator system both, of 

these are common problems.  Most hydraulic systems are highly nonlinear, 

usually due to the equations that define the system.  In addition, the servovalve 

dynamics are usually modeled with different degrees of complexity.  Some 

authors assume the servovalve to be fast enough, such that, the actual dynamics of 

the servovalve can be ignored or approximated by a second or third order system 

[2–4]. 

 

This paper will demonstrate the Simulink implementation of the electrohydraulic 

servo actuator system equations, as well as, controller models.  The controllers are 

designed around improving the efficiency of the step response by looking at the 

input signal for a plant from a controller, while at the same time attempting to 

decrease the settling time of the system.  The percent overshoot of the controller 

designs are also investigated.  The Simulink model will also make use of the 
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nonlinear equations and will not use linearized equations or transfer functions as 

approximations. 

 

Chapter 1 provides a literature review of efficient controller design.  The design 

of controllers and efficiency of hydraulic systems is reviewed.  Numerical 

simulation is also discussed in detail as it pertains to hydraulic systems which are 

typically, by nature, stiff nonlinear systems. 

 

Chapter 2 discusses the equations used to model the electrohydraulic actuator.  

The equations for each section of the electrohydraulic actuator are presented with 

a discussion of the variables used.  Improvements to the equations are also 

presented for use later on in the modeling of the equations. 

 

Chapter 3 introduces the Simulink model produced for this thesis.  The Simulink 

model is presented along with an explanation of different aspects of the model.  

The nonlinear model is also verified using three methods; frequency analysis, step 

input response comparison, and variable verification based on literature sources.  

Finally, a discussion on techniques for solving differential equations especially 

pertaining to nonlinear and stiff differential equations is explored. 
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Chapter 4 discusses the different types of controllers designed.  Three different 

controllers were designed; PID with anti-windup, full state feedback, and a hybrid 

PI-full state feedback.  All controller designs are evaluated in the Simulink 

nonlinear model created.  A discussion of the different controller types and their 

input signal is discussed.   Furthermore, equations are developed to aid in the 

creation of full state and state estimator gains for scaled systems that fall 

symptom to numerical issues during calculation.  The controllers mentioned are 

also analyzed with regards to pulse disturbances added after the controller. 

 

Chapter 5 provides an overview of what is presented in the thesis.  Additionally, 

the areas for improvement are discussed.  Areas for future study are also 

presented. 

 

1.2 Literature Review 

 

This section will highlight literature sources that focus on the modeling and 

efficiency analysis of hydraulic systems.  While the approach that is being taken 
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in this paper differs from the research reviewed it is important to have an 

understanding of other means of efficient performance.   

 

1.2.1 Efficient Controller Design 

 

There are many different routes that can be taken to increase the efficiency of a 

fluid power system.  Different methods include efficient controller designs and 

possibly extra equipment to allow regeneration.  Troxel and Yao [5], looking at 

the velocity control of a hydraulic cylinder, utilized separate spool valves to 

regulate the cylinder chamber pressures.  Typical hydraulic cylinders have one 

spool valve which makes regulating each cylinder chamber pressure impossible.  

By utilizing separate spool valves, regeneration becomes much more possible.  

Regeneration in this context refers to utilizing fluid from one chamber and using 

it in another chamber by recycling the fluid.  The purpose of the study was to 

reduce the energy by means of regulating the flow rate and pressure.  Both of 

which cannot be done independently by a typical spool valve configuration.  

Regeneration could be implemented whenever the pressure is higher in one 

chamber than the other, with regards to a fluid with a flow rate.  This is typical in 

instances of deceleration or when lowering a heavy load.  In the case of a single 
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rod cylinder, regeneration may also be possible when extending a rod due to the 

difference between the head and rod cross sectional areas. 

 

Oil flowing through a valve dissipates power, based on the product of the pressure 

drop and the flow rate.  By this relationship, the most efficient flow comes from a 

fully open valve which would produce a very small pressure drop.  Troxel and 

Yao utilized a multi valve system and controller design to improve the efficiency 

of a hydraulic cylinder.  The six valve configuration can be seen below as Fig. 

1.1. 
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Fig. 1.1:  Six Valve Energy Recovery System [5] 

This concept of using separate valves has been studied quite a bit by other 

researchers.  With this configuration, regeneration can be utilized.  In order to 

properly utilize this efficient design, a low-level adaptive robust controller and 

high level logic had to be implemented.  Additionally, the design allowed 

independent control of cylinder pressures.  
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Almost all systems especially fluid power systems have saturation limits that 

prevent control systems from operating to their fullest.  This is due to the general 

inability to easily model systems and implement controllers that know about the 

saturation limits.  This can also cause problems with leading to less than ideal 

efficient designs.  One simple way of working around this issue is to implement 

anti-windup, which is regularly used with integrator anti-windup methods.  There 

can be issues with a system that has more than one saturation limit, such as a 

spool with known limits that drives the placement of an actuator.   

 

In addition to this, the control scheme can also suffer degradation by sudden lack 

of change from the plant due to the saturation.  Doyle et. al [6] has shown that in 

single input single output (SISO) systems, Internal Model Control (IMC) for a 

given stable plant can guarantee closed loop stability even with saturation.  

Traditional anti-windup works by comparing the signal before and after the 

saturation point.  The signal is then multiplied by a gain block and added back 

into the loop.  This is usually performed and found to be effective.  This method is 

used extensively in industry, especially with traditional PID schemes.  However, 

the traditional anti-windup can cause instability given the right set of conditions.   
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Other methods have also been developed utilizing minimum energy control.  

Chen et. al [7] compared different minimum energy methods for a mass spring 

damper system.  Four different methods were compared.  The traditional 

minimum control energy method via Hamiltonian function and optimal control by 

Riccati equation are compared.  Additionally, an optimal control with exact 

solution and a minimum control energy based on a PID controller utilizing 

particle swarm optimization approach was also analyzed.  From the analysis, the 

PID method developed from particle swarm optimization yielded the best results 

in terms of control energy input.  All of these methods were validated by 

numerical simulation.  It should be noted that while optimal is generally used to 

define the best solution, the PID from particle swarm optimization actually 

yielded the best results.  As such it should be noted that other forms than the 

optimal solution should be developed and tried out on a system. 

 

Additionally, the efficiency of the controller can also be improved during the 

conversion from a continuous controller to the implementable digital controller.  

Kim et. al [8] introduced a modified Tustin transformation to improve the 

conversion from continuous to discrete.  Traditionally, the standard Tustin 

transformation is most commonly used to convert the continuous controller design 

to the digital version.  As known all poles that are stable are correctly transferred 



www.manaraa.com

10 

 

to inside the unit circle of the digital z plane by the Tustin transformation as 

shown by Eq. (1.1).   

   
   

 
   

   
 
   

 (1.1) 

 

Other methods of transformation include the forward rectangular method, which 

overestimates the digital pole locations.  This method can lead to instability, due 

to the fact that this method can place stable continuous poles outside of the unit 

circle, thus, leading to an unstable system that has been digitally implemented.  

The backward rectangular method places all the poles in the unit circle between 

z=[0,1].  This can lead to poles not being utilized to their fullest, by means of the 

placement in the continuous design 

 

Kim et. al [8] developed a method that allows the digital pole locations of an 

already stable system to be altered based on a scaling factor.  This modified 

Tustin transformation has the ability to move the poles that are close to z=-1, 

closer to the origin, i.e. away from the z=-1, as shown in Fig. 1.2.  It is known that 

poles near z=-1 tend to introduce more oscillation into a system as z=-1 is an area 

of high frequency on the unit circle.  This can lead to an increase in extra energy 
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and, especially for electrohydraulic systems, can cause excess wear on the 

equipment.   

 
Fig. 1.2:  Modified Tustin Unit Circle [8] 

 

The modified Tustin transformation utilizes the  ̂ domain.  To begin, first the 

plant is converted to the digital z domain utilizing the standard Tustin 

transformation.  Then, the modified Tustin is performed by Eq. (1.2), 

   
   

 
  ̂ 

    
 
  ̂ 

 (1.2) 
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where T is the time step and f is the scaling factor to be determined.  Through trial 

and error, the f value is varied until an acceptable response is found.  Then the 

standard Tustin transformation is used to convert back into the z domain.  Due to 

the direct replacement of variables there is no approximation and, as such, the 

mapping is correctly mapped back to the z domain from the  ̂ domain.  This has 

been suggested as an improvement over simply using the standard Tustin 

transformation, due to the approximation that is performed from the continuous to 

digital domains. 

 

By making the scaling factor, f, in Eq. (1.2) greater than unity, this causes the unit 

circle to be skewed further away from the z=-1, while still maintaining the z=1 

side of the unit circle.  This is very useful when designing a controller in the 

continuous state and then converting to the digital state, only to find that the 

digital poles are very close to the z=-1 side of the unit circle.  This provides a 

quick and simple way to make the digital poles more favorable.  Kim et. al [8] 

also performed an analysis of an electrohydraulic actuator and was able to reduce 

the energy input signal.  This also reduced the system overshoot along with the 

settling time.  All of which is very beneficial to an engineer. 
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1.2.2 Numerical Modeling 

 

There are many examples where models of fluid power systems are numerically 

simulated.  However, not very many papers go into detail describing how models 

are implemented, or if nonlinear models are used. 

 

Chatzakos and Papadopoulos [9] created a Simulink model of a similar 

servovalve used in this analysis.  To implement their design in Simulink, linear 

graph theory was used.  The simulated model was then used to judge the ability of 

controllers to position and force tracking.  Chatzakos and Papadopoulos ignored 

the effects of the torque motor.  This was due to the fact that the natural frequency 

was much larger than the desired closed loop bandwidth.  The orifice equations 

were, however, taken into account.  Rather than simply using an nth order transfer 

function to model specific aspects of the electrohydraulic actuator, separate 

linearized equations were used.  This helps the modeling process by not solely 

relying on transfer functions that may miss important aspects not developed in the 

transfer function.  At the same time the linear equations reduce the complexity of 

the model both in terms of computation difficulty and possibly the accuracy of the 

solution. 
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Maiti et. al [10] developed a dynamic model based off of a pressure relief valve.  

The dynamic equations were then linearized and the model was created in 

Simulink for further analysis.  Due to the fact that the system was linearized, 

allowed for a much easier implementation.  Additionally, all values were already 

known.  The complete model utilizing the built-in Simulink blocks can be seen 

below as Fig. 1.3. 

 
Fig. 1.3:  Linearized Simulink Model for Pressure Relief Valve [10] 

The Simulink model also consists of subsystems containing other parts of the 

linearized dynamic equations.  Maiti et. al were able to produce accurate results 

from different parts of the linearized model.  Both the experimental and simulated 
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results matched closely.  Validation was performed at different step inputs and the 

different pressures in the model were verified. 

 

Numerical models have also been created for specific parts of a hydraulic system.  

Gordic et. al [11] created a Simulink model for only the servovalve and torque 

motor.  The flapper assembly was also analyzed in detail.  Gordic et. al was able 

to create an accurate mathematical model that described the behavior of 

electrohydraulic servovalve by implementing the modeling in Simulink.  

Additionally according to the article linearization techniques were not performed 

on the developed equations used for simulation. 

 

Fang et. al [12] performed a simulation based on a three way servo-proportional 

valve.  The servo-proportional valve used for the simulation is shown below as 

Fig. 1.4. 
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Fig. 1.4:  Servo-proportional Valve [12] 

The spool valve does not have the traditional setup where the solenoid or torque 

motor is positioned above the spool, but is rather in line with the spool.  This 

provides a more instantaneous relation because the spool movement and is not 

regulated by a pressure difference, but rather directly from the solenoid.  The 

spool valve is then solely responsible for regulating the flow into and out of the 

valve.   

 

Based on experimental data, the parameters were determined and used in a 

Simulink model as shown in Fig. 1.5 
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Fig. 1.5:  Simulink Model of Servo-Proportional Valve [12] 

From the Simulink model, it can be seen that, the model has been simplified with 

the use of transfer functions and MATLAB Function Blocks.  The use of linear 

transfer functions decreases the complexity of the model however; the use of the 

MATLAB Function Blocks can lead to an increase in computational time due to 

having to compile the MATLAB code for the simulation.  Additionally the spool 

is linearized and the solenoid is approximated by a first order system. 

 

As discussed, fluid power systems are typically highly nonlinear systems that are 

hard to completely model by a transfer function or state space model.  

Additionally, fluid power systems are traditionally stiff systems in terms of the 

differential equations.  Aman [13] dissertation explains ways to improve upon the 

simulation of fluid power systems.  Aman indicates that in addition to using a stiff 

ODE solver, if a fixed step rather than a variable step solver is used will cause 

stability problems.  This is especially true when pressures in small volumes, such 
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as a spool or actuator, are integrated.  By using a variable step, the step size will 

decrease as the volume decreases.   

 

Aman also discussed many other methods for improving the dynamic simulation 

ability of a fluid power system.  There are two main ways of improving numerical 

solutions of stiff systems.  The first method as mentioned above is to develop or 

use a solver specifically designed to handle stiff systems.  The other approach is 

to use approximations for various stiff parts, such as transfer functions or other 

approximations.  The latter method is shown to be a common approach 

throughout the literature sources in this section. 

 

Anderson and Li [14] created a Simulink model of a two spool flow control 

servovalve with a pressure controlled pilot.  The main purpose of this model was 

to model the valves nonlinearity with Simulink.  The valve is shown below as Fig. 

1.6. 
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Fig. 1.6:  Two Spool Flow Control Servovalve [14] 

The equations were then presented for description of the system based on force 

and flow analysis.  After a few simplifications a Simulink diagram was created.  

This is shown below as Fig. 1.7. 
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Fig. 1.7:  S-Function Simulink Model [14] 

 

The Simulink model utilized S-Functions to simplify the creation of the model.  

S-Functions were used instead of typical graphical blocks due to the complexity 

of the system as illustrated by the equations shown by Anderson and Li.  While 

the S-Function does simplify the building of the model, it does reduce the ability 

to readily look at any value of interest in a model, which can be seen by using the 

graphical block diagram approach. 
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To verify the accuracy of the model, the steady state response was evaluated for 

the flow versus current and pressure against experimental data.  The step response 

was also compared against experimental data.  Finally, a swept sinusoidal current 

was applied to produce a frequency response characterization of the model to 

compare against experimental data. 

 

All of these sources explain the importance of accurate modeling due to the high 

nonlinearity associated with hydraulic systems.  The ultimate test for any set of 

equations is experimentally validating them.  Additionally the references brought 

up in these sources indicate the degree of difficulty associated with modeling a set 

of nonlinear equations to the degree presented in this thesis. 

 

1.3 Problem Statement 

 

The objective of this thesis is to model the nonlinearities of electrohydraulic servo 

actuator in Simulink.  Additionally controllers were designed and implemented in 

the nonlinear Simulink model to improve the settling time.  The percent overshoot 

was also evaluated.  The controller designs were also gauged on their energy 

effectiveness by looking at the input signal.  As a final check the controllers were 
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also analyzed for disturbance rejection.  A pulse disturbance was applied after the 

controller and the actuator positions where then compared to determine which 

controller rejected the disturbance the best.  A literature review was performed 

that evaluated different techniques of energy recovery for fluid power systems.  

Additionally, due to the degree of Simulink modeling performed, different models 

were analyzed to show the level of detail presented in this model which is not 

usually shown in literature.   

 

Due to the fact that not all the values that defined the set of equations were 

available or known parameter estimation had to be performed to determine the 

values.  The actuator step response was compared against the accepted eighth 

order closed loop transfer function that defined the electrohydraulic servo 

actuator.  The step response was compared at 2.54e-4 [m], which is considered to 

be within the linear region of the model.  The frequency response of the overall 

system and the subsystems were compared against their respectable transfer 

functions.  The step response at larger step inputs represented typical nonlinear 

behavior for hydraulic systems outside the linear range.  The final variables were 

also justified against accepted literature values.   
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Finally three controller designs were implemented; a PID with anti-windup, full 

state feedback, and a PI full state feedback.  The eighth order transfer function has 

large values which can lead to numerical issues.  This became apparent with the 

full state feedback approach which required pole placement techniques to be 

implemented.  To remedy this, special equations were developed to determine the 

feedback gains from feedback gains that were developed using scaled transfer 

functions.  The scaled transfer function reduces the large values and allows 

calculations of the feedback gains while preserving the response in the scaled time 

domain without numerical issues. 

 

Chapter 2 Modeling of Electrohydraulic Servo Actuator 

 

2.1 Chapter Overview 

 

This chapter discusses modeling of an electrohydraulic actuator.  The chapter is 

broken down into the different equations used to describe the electrohydraulic 

actuator along with an explanation of the equations.  The primary objective of this 

section is to explain the equations already developed [4] and how they will be 

used in the subsequent chapter for modeling in Simulink.  Important 
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modifications are made to make the model exhibit more nonlinearities and make it 

easier for the solver to solve the stiff differential equations. 

 

2.2 Nomenclature 

 

This section presents the variables, units, and a description of the variables used 

to explain the system presented below. 

 

Variable Units Description 

θf [rad] angle at which fluid jet leaves spool chamber 

Ms [kg] mass of spool 

Cqo [-] orifice flow coefficient 

Cqn [-] nozzle flow coefficient 

Cq [-] flow coefficient through spool port into chamber 

J [kg-m
2
] moment of inertia of torque motor 

Ao [m
2
] cross sectional area of orifice 

Dn [m] diameter of nozzle 

Ka [N-m/rad] rotational stiffness of flexure tube 

As [m
2
] area of spool valve 

R [m] distance from nozzle to pivot point of flexure tube 

B [m] distance from nozzle to spool 

Bs [N/(m/s)] damping coefficient of servovalve system 

ρ [kg/m
3
] density of hydraulic fluid 

L1 [m] 

axial length between 'Ps' port and input port of 

actuator 
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L2 [m] 

axial length between 'Pe' port and input port of 

actuator 

A1 [m
2
] effective area of double-ended piston 

W [m
2
/m] area gradient 

Mt [kg] mass of actuator 

βe [N/m
2
] compressibility of hydraulic oil (Bulk Modulus) 

Ps [N/m
2
] supply pressure equivalent to 2700 [psi] 

K [N-m/m] 

net stiffness of cantilever feedback spring connected 

to flapper 

Bv [N-m/(rad/sec)] damping coefficient of torque-motor 

Kt [N-m/A] torque motor gain 

Xfm [m] maximum flapper displacement 

Vao [m
3
] enclosed volume on each side of actuator when xa=0 

Ba [N/(m/s)] damping coefficient of actuator 

Km [N-m/rad] electromagnetic rotational stiffness 

Fd [N] disturbance force input on actuator 

Vso [m
3
] enclosed volume on each side of spool when xs=0 

fr [N] flow reaction force 

θ [rad] angular position of armature 

Ω [rad/s] angular velocity of armature 

ps1 [N/m
2
] pressure on one end of spool 

ps2 [N/m
2
] pressure on one end of spool 

xs [m] spool position 

vs [m/s] spool velocity 

pa1 [N/m
2
] pressure on one side of actuator 

pa2 [N/m
2
] pressure on one side of actuator 

xa [m] actuator position 

va [m] actuator velocity 

i [A] input current to torque-motor 
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2.3 Defining Equations 

 

The equations that define the system are nonlinear and deserve a closer 

examination to understand the assumptions made for the correct analysis of the 

system.  Shown below, Fig. 2.1 is the schematic for the basis of the 

electrohydraulic servo actuator.  This model is based around the Moog 760 

Direct-Operated Servovalve line.  The system consists of a two-stage flow control 

servovalve with a double-ended actuator.  The servovalve is broken down into 

two stages; the current to angle stage and the angle to spool position.  The four 

way sliding spool valve is in a closed-center position, as is typical for a spool 

valve used in conjunction with a double acting cylinder. 
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Fig. 2.1:  Electrohydraulic Servo Actuator Schematic 
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2.3.1 Torque Motor Stage 

 

The torque motor stage is the top half of the electro hydraulic actuator as shown 

in Fig. 2.1.  The torque motor stage takes in a current, typically from a voltage 

supply.  The current that is supplied to the armature inside a permanent magnet 

induces a torque causing rotation of the armature.  This in turn causes the flapper 

to move and allows a pressure difference on either side of the spool valve.  This 

difference in pressure causes a force to be acted on the spool, allowing it to move 

in one direction or the other as shown in Fig. 2.2 [15].   

 
Fig. 2.2:  Servovalve Operation [16] 
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Spool valves usually have a spring to help center the spool.  Two configurations 

are common.  The first configuration consists of two springs of equal quality on 

either end of the spool.  The second configuration is a flexure tube that extends 

from the flapper and acts as a cantilever spring.  The latter configuration 

described will be used throughout the analysis. 

 

The torque motor stage is represented by 

  ̇    

 ̇  
 

 
{              [         ]     

          
   

 

 
       

  [       )
 
   

 (      )
 
   ]} 

 

(2.1) 

from summing the torques about the center, O, of the torque motor in Fig. 2.1.  

From Eq. (2.1), it can be seen, that the small angle theorem is assumed.  Also, the 

predominant torque comes from the first term, the torque motor gain.  The second 

and third terms are the rotational stiffness.  The remaining terms are rotational 

damping, and the flow and pressure forces exhibited at the nozzle.  R and B are 

the corresponding distances from O, the center, to the nozzle and from the nozzle 

to the center of the spool respectively. 
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2.3.2 Flapper-Nozzle Stage 

 

The flapper nozzle stage consists of the reactions at, and around the nozzle.  This 

is an important part of the system, due to the fact that the pressure is regulated at 

this point and thus affects how the spool will move and ultimately the actuator.  

As such, the flow forces and position of the flapper needs to be accurately 

modeled. 

 

The flapper nozzle stage is defined as 

  ̇   
  

   
{     √

         

 
       √

           

 
     } (2.2) 

  ̇   
  

   
{     √

         

 
       √

           

 
     } (2.3) 

where: 

     (      )    (2.4) 
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In Eqs. (2.2) and (2.3) the first two terms are the flows through the orifice and 

nozzle respectively, where s1 and s2 indicate either side of the system.  The last 

terms in Eqs. (2.2) and (2.3) are equivalent to the flow rate exhibited on the spool. 

 

2.3.3 Spool Force Analysis 

 

To include an analysis of the spool, a force balance had to be conducted to 

properly model the spool dynamics.  The spool is allowed to move horizontally in 

the chamber and has five different forces acting on it. 

 

The force balance on the spool is 

 

 ̇     

 ̇  
 

  
{            

 [         ]

   
        

 [     ̇       ̇]} 

(2.8) 

where: 

      

             (  )                     (2.9) 
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         √
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         √
         

 
 (2.17) 

In Eq. (2.8), the first term is the pressure difference multiplied by the cross 

sectional area of the spool.  The second term is the force from the flexure spring, 

and the third term is the damping force of the spool.  The last two terms are the 

flow reaction force and the transient flow force.  Due to the fact that the spool is 

in a closed-center position requires the conditional statements for xs>0, xs<0, and 

xs=0.   
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2.3.4 Area Gradient 

 

Eqs. (2.9)-(2.17) make use of a linear area gradient, W, to compute the ratio of the 

spool area that is open in relation to the position of the spool.  This is acceptable 

for square ports, however, with circular ports, as was used in this model, this can 

lead to an overestimation of the true area opening of the port. 

 

As an improvement, the area gradient can be rewritten as a function of the radius 

and spool position, shown below as Eq. (2.18). 

   

{
 
 

 
 [    (

      
 )

  

    (    (
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)]
  

 

    
     

   

  
     

 (2.18) 

With the addition of Eq. (2.18), a more accurate Simulink model can be 

developed to model the circular ports more accurately.  This nonlinear equation 

better approximates the nonlinearities associated with a circular port.  By 

performing a linear fit on the area gradient, as shown below in Fig. 2.3, it can be 

seen that by assuming a constant area gradient of 0.0071, the constant area 

gradient both under estimates and over estimates the actual area.  When the spool 

port is first opened the assumption of the constant area gradient can cause an error 
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of approximately 95% as compared to the expected response between the port 

area approximations. 

 
Fig. 2.3:  Area Gradient Comparison Linear vs Nonlinear 
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2.3.5 Flow Continuity Through Actuator 

 

The flow continuity through the actuator is defined as, 

  ̇   
  

   
          (2.19) 

  ̇   
  

   
          (2.20) 

where 

             and              

Eqs. (2.19) and (2.20) account for the difference between the flow rate and the 

velocity of the actuator. 

 

2.3.6 Actuator Force Balance 

 

To model the dynamics of the actuator in response to a pressure change, the 

dynamic equations needed to be developed.  The force balance on the actuator is, 

 

 ̇     

 ̇  
 

  
[                   ] 

(2.21) 
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where the primary force comes from the pressure difference shown as the first 

term.  The second term is the damping of the actuator and fd is a supplied force on 

the actuator, which could possibly be used as a disturbance force [4]. 

 

2.4 Linearized Transfer Functions 

 

From these equations, two linearized transfer functions were created, one for the 

current to spool and one for the spool to actuator [4].  Not all of the variable 

values were known so the creation of the transfer functions also relied on 

frequency plots of real data to fit the transfer function to the experimental data.  

Equation (2.18) is disregarded during the linearization and is only included in the 

Simulink model.  The current to spool transfer function is defined as, 

 
  

 
 

                 

                                             
 (2.22) 

while the spool to actuator transfer function is defined as, 

 
  

  
 

      

                 
 (2.23) 

From Eq. (2.23) there is a pole at zero which would lead the open loop system to 

being unstable.  To improve the stability of the plant, two transfer functions are 



www.manaraa.com

37 

 

cascaded and placed in a closed loop system to stabilize the system.  The transfer 

function that results is an eighth order system shown as 

         
    

    
 (2.24) 

where num8 is 

                          (2.25) 

and den8 is 

 

                                               

                                

          

(2.26) 

 

If the po8n model was not designed as discussed then the spool would stay in an 

open position causing the actuator to move whenever an input signal was applied 

to the plant.  It would become much more difficult to control the placement of the 

actuator without the negative feedback loop. 
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Chapter 3 Simulink Modeling 

 

3.1 Chapter Overview 

 

The purpose of this chapter is to discuss the steps that went into modeling the 

electrohydraulic actuator from the equations presented earlier.  Additionally, the 

model is verified through three different means to determine if the model can be 

used for further analysis.  Finally, a discussion on numerically solving differential 

equations is presented in the context of stiff and nonlinear differential equations.  

A discussion on zero-crossing detection is also presented 

 

3.2 Simulink Modeling 

 

The equations used earlier to define the system are implemented into a full 

nonlinear Simulink model.  The closed loop model is implemented with a 

subsystem as shown in Fig. 3.1. 



www.manaraa.com

39 

 

 
Fig. 3.1:  Closed Loop Nonlinear System 

The subsystem mentioned in Fig. 3.1 is shown as Fig. 3.2. 
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Fig. 3.2:  Main Nonlinear Plant Model 
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From this model, the system is further broken down into different sections such as 

the Flapper-Nozzle Stage, Torque Motor Stage, and Conditions for xs.  All of 

these sections are based on the nonlinear equations developed earlier. 

 

Within the Simulink model, the force balance equations on the spool contain two 

sets of values that require the calculation of the flow rate utilizing the derivative 

of the flow rate into and out of the actuator from the spool, see the last two terms 

in Eq. (2.8).  In order to numerically solve this in Simulink, a Derivative Filter 

block was created, Fig. 3.3, which included a derivative, s term (zero), and a First-

Order Low Pass Filter. 

 
Fig. 3.3: Derivative Filter Utilized in Simulink Model 

From this block diagram the transfer function can be shown as, 
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(3.1) 

where K, is the low pass filter gain, and Out1 and In1, are the output and input of 

the block system, respectively. 

 

Rearranging Eq. (3.1), the derivative and low pass filter can more easily be seen, 

 
 

 
   

 
(3.2) 

With this form in the s-domain the derivative, s, and the low pass filter, K, can be 

easily understood.  In the form of this equation the low pass filter gain value 

should be inputed as 1/fbreak, where fbreak is the break frequency.  For this 

simulation, the break frequency was set to be 100 Hz.  This was as an appropriate 

value to prevent noise from causing the simulation to become numerically 

unstable and was determined through multiple iterations at different values. 

 

As with any system, there are limits to which a system can be expected to operate.  

This system has three main limits.  The first is the limit of the input current which 

drives the system.  For the actual system the input current is limited to ± 40 [mA]; 

anything outside of that range could cause the torque motor to burn up.  
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Additionally, the spool is limited to  ± 8.71e-3 [m] and the actuator is limited to ± 

2.54e-2 [m] per the actual limits on the  physical system. 

 

In order to accurately model the spool and actuator saturation limits, a series of 

blocks were used to either allow or not allow the simulation to calculate values 

based on the placement of the spool and actuator.  To accomplish this in 

Simulink, Fig. 3.4 was implemented. 

 
Fig. 3.4:  Saturation Limits 
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value.  Depending on the saturation signal and the sign of the force, the block will 

either output zero or the force value.  This allows the system to stop calculating 

the acceleration, velocity, and displacement when the saturation limit is reached, 

and then, begin calculating again once the displacement signal is less than the 

saturation limit.  This setup was implemented for both the spool and actuator. 

 

The set of nonlinear equations used to define the system are in absolute pressure.  

This presents the unique opportunity in Simulink to allow saturation limits to be 

defined.  The saturation limits on the integrator block for calculation can be 

limited to zero and infinity.  This helps with computation time since using 

absolute pressure calculations will never allow a value below zero units of 

pressure to exist. 

 

With that being said, there is still a possibility, especially, when calculating the 

difference between pressures, that the net difference will be less than zero due to 

numerical simulation techniques.  This can cause problems, especially for the 

flapper nozzle equations that deal with the turbulent flow equations through an 

orifice.  Due to the fact the square root will be taken of the pressure difference, a 

negative pressure difference will result in a complex value.  To remedy this 
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problem a saturation block was implemented at those problem points.  This limits 

the signal to be between zero and infinity, allowing for a resilient simulation 

model.   

 

To model the spool dynamics, conditional statements had to be implemented as 

shown in Eq. (2.9)-(2.17).  The model is broken down into three separate sections 

to accurately handle the equations as shown in Fig. 3.5.   
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Fig. 3.5:  Conditional Statement Modeling 
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The conditional was setup by first using an if/elseif conditional block.  Depending 

on the input of the block, xs, the output would then be sent out and enable the 

corresponding subsystem.  Additionally, a merge block had to be used for Fr, Q1, 

and Q2, due to the fact that there were three potential outputs.  The merge block 

worked by combining or merging the signals from the separate points of 

origination to create one cohesive signal. 

 

Throughout literature most models approximate the system of an electrohydraulic 

actuator through the use of linearized equations [17].  While this is useful, a more 

complete model can be implemented by utilizing the nonlinear equations into a 

Simulink model.  With the addition of the nonlinear model the nonlinear nature of 

the model can be better analyzed, especially, when controllers need to be 

implemented or even for design modifications.  Typically, the servovalve 

dynamics are usually neglected or approximated by first, second, or third order 

equations [11]. 
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3.3 Simulink Model Justification 

 

In order to justify the Simulink model created and the solutions presented, three 

methods were chosen.  The first method was a frequency justification using bode 

plots of different aspects of the closed loop system.  Additionally, the step input 

responses of the transfer function was compared against the nonlinear model at 

acceptable linear ranges.  The step responses at larger distances were also used to 

gauge the extent of the nonlinearity as well as the believability of the Simulink 

nonlinear model.  Finally, the values that were unknown had to be estimated via 

parameter estimation.  The values that were estimated were then compared against 

known acceptable values to determine the validity of the estimation.  The final 

model offers the unique advantage over other models, especially, models that are 

modeled with transfer functions or S-functions or MATLAB function blocks that 

allows an individual to look at the values all throughout the model.  This does not 

just apply to the input and output responses, but also pressures, flow rates, and a 

whole host of other values of interest. 
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3.3.1 Time Response Parameter Estimation 

 

The step input response was evaluated at different step inputs.  The data was 

originally fit to the transfer function step input of 2.54e-4 [m] as a starting point.  

This was done to accurately use the linearized po8n model for the nonlinear 

model.  Knowing that there was only a limited range for which the linear po8n 

would accurately predict the nonlinear response, a step input of 2.54e-4 [m] was 

used.  For the actuator to spool transfer function the same sinusoidal input signal 

was applied to the current, but then the spool and actuator resulting sinusoidal 

response was gathered.  The parameter estimation was estimated at this point 

because it was deemed a safe region where the true model was known to exhibit 

linear traits, as seen in the linearized eighth order transfer function.  By fitting the 

unknown parameters to the linearized transfer function output, the following 

figure was created. 
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Fig. 3.6:  Linearized vs Nonlinear Step Response at 2.54e-4 [m] 
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spool responses, both linear, and nonlinear were used to develop the 0.1503 

factor.   The effect of the spool value can be seen in the bode plot for the spool, 

Fig. 3.10 and Fig. 3.11.   

 

While experimental data was not available for large step inputs as shown in Fig. 

3.7, the nonlinear Simulink model was still able to accurately reproduce nonlinear 

results for both the spool and actuator.  This is in contrast to other models, 

especially the references, which typically approximate the servovalve, and the 

combination of the spool and actuator combination into one model.   
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Fig. 3.7:  Step Input Response of 1.27e-2 [m] 

The actuator and spool both provide responses that would typically be seen at 

larger step inputs.  This is especially true with the overshoot and undershoot seen 

by the actuator and spool responses.  Additionally, more plots at various step 

amplitudes in between 1.27e-3 [m] and 2.54e-4 [m] can be seen in Appendix A.  

The nonlinearities, especially with the larger step inputs can be verified by the 
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which results in a larger overshoot with a step response.  A similar response can 

be seen from the larger step inputs of the closed loop model. 

 
Fig. 3.8:  Frequency Response Nonlinearities [18] 

The nonlinear effects in electrohydraulic systems are well known and can cause 

response problems which is apparent as mentioned above [19]. 

 

Additionally a similar system could be tuned for different variable values and then 

be used to show the nonlinearities of that system.  Ultimately this allows an 
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individual to explore different aspects of a system with nonlinearities, rather than 

a pseudo-nonlinear system or entirely linear system. 

 

3.3.2 Frequency Justification 

 

In the Simulink model created, both the step and bode plots were compared 

against the linear transfer functions.  As shown below, Fig. 3.9 shows the 

comparison between the nonlinear Simulink model at various reference sinusoid 

input amplitudes versus the accepted eighth order po8n model. 
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Fig. 3.9:  Magnitude Phase Comparison of po8n Model 

 

From the Fig. 3.9, it can be seen, that the nonlinear model matches the accepted 

linear transfer function, Eq. (2.24), up to the 200-300 [Hz] range.  This is well 

past the bandwidth of the system, assuming a -3 [dB] drop from the initial 

position.  The bandwidth for the closed loop system is approximately 45 [Hz], 

which shows that the model works well past that frequency.  The simulation data 

is determined by running the simulation at the various sinusoidal amplitudes as 

indicated by the legend for the input signal.  The output, actuator position, and 

input, reference signal, were then compared to produce the plot above.   
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Shown below, Fig. 3.10 shows the current input versus spool response. 

 
Fig. 3.10:  Magnitude Phase Comparison of Spool vs Current Input 

 

From Fig. 3.10, it can be seen, that magnitude and phase both closely follow the 

accepted fifth order transfer function, Eq. (2.22).  The magnitude values for the 
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when converted to [dB] results in the magnitude shift in the transfer function as 

shown in Fig. 3.10.  From this explanation it can be seen that a correlation has 

been made linking the two justification methods for this particular set of variable 

values.  In addition, the linearized transfer function is based off of a voltage from 

the lvdt used to measure the displacement of the spool.  This accounts for the 

offset shown above.  The simulation data is determined by running the simulation 

at the various sinusoidal amplitudes as indicated by the legend for the current 

input signal.  The output, spool position, and input, current, were then compared 

to produce the plot above.  This bode plot also shows that high speed dynamics 

has been accurately captured by the nonlinear model given that the bandwidth of 

xs/i transfer function is approximately 115 [Hz].  This bandwidth is more than 

twice the bandwidth of the closed loop system, showing that while it is not 

entirely necessary for modeling purposes, it can still provide useful information 

about the dynamics of the spool.   

 

Finally, Fig. 3.11 below shows the comparison of the spool to actuator for the 

nonlinear and linear versions Eq. (2.23).  The magnitude plot has the same offset 

as Fig. 3.10, does and follows the same general trend as the linear transfer 

function.  The data for Fig. 3.11 was calculated the same way the other plots 
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were, by applying a constant sinusoidal input and then comparing the response of 

the spool and actuator. 

 
Fig. 3.11:  Magnitude Phase Comparison of Spool Input vs Actuator 

The nonlinear plant follows the linear transfer function until approximately 500 

[Hz] for both the phase and magnitude plots.  Once again the shifted magnitude 

response of the transfer function is determined based on the same factor that was 

used for the 2.54e-4 [m] step response, 0.1503.  This further shows the 

relationship between the two justification methods and based on the parameters 

chosen provide an accurate correlation, accounting for each other discrepancy.  
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There is a slight disagreement between the simulated data and the transfer 

function at low frequencies; however this is typical for hydraulic systems.  

Additionally the difference in magnitudes between the spool and actuator can also 

be credited with the error between the transfer function and simulation values.   

 

Table 3.1 below shows the bandwidth for the corresponding system and the 

agreement of the nonlinear Simulink model to the linear transfer function. 

Table 3.1:  Nonlinear-Linear Frequency Comparison 

Model Subsection Bandwidth [Hz] Nonlinear Model Effective 

Range [Hz] 

po8n (closed loop model) 45 0-200 

Xs/I (Current and Spool) 115 0-400 

Xa/Xs (Spool and Actuator) 1.4 0-500 

 

From the table it can be seen that the nonlinear model follows the linearized 

transfer function well past the bandwidth of the system.  The bode plots and Table 

3.1 show that the nonlinear model developed in Simulink is a good representation 

of the electrohydraulic actuator.  Additionally not just the initial reference signal 

and actuator position signal, but also the transitional parts of the system have 

good correlation with the appropriate linear model. 
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3.3.3 Variable Justification 

 

In order get the correct response, variables had to be estimated, due to not 

knowing the actual value.  Table 3.2 shows the final values used for the 

simulation. 

Table 3.2:  Variable Values 

Variable Units Value Estimated/Known 

A1 [m
2
] 3.613e-4 Measured 

Ao [m
2
] 2.241e-7 Estimated 

As [m
2
] 1.677e-5 Measured 

B [m] 2.267e-2 Measured 

Ba [N/(m/s)] 1.068e-2 Estimated 

Bs [N/(m/s)] 5.621e-4 Estimated 

Bv [N-m/(rad/sec)] 7.161e-2 Estimated 

Cq [-] 5.726e-1 Estimated 

Cqn [-] 5.901e-1 Estimated 

Cqo [-] 6.730e-1 Estimated 

Dn [m] 6.972e-4 Estimated 

Fd [N] 0 Variable 

J [kg-m
2
] 8.866E-08 Estimated 

K [N-m/m] 7.916e2 Estimated 

Ka [N-m/rad] 8.582e2 Estimated 

Km [N-m/rad] 4.402e-4 Estimated 

Kt [N-m/A] 1.318e3 Estimated 

L1 [m] 1.2e-2 Measured 

L2 [m] 1.067e-2 Measured 

Ms [kg] 2.52e-2 Measured 

Mt [kg] 9e-1 Measured 

Ps [N/m
2
] 1.860e7 Measured 

R [m] 1.067e-2 Measured 

Vao [m
3
] 9.177e-6 Measured 

Vso [m
3
] 1.461e-7 Estimated 

Xfm [m] 3.115e-5 Estimated 

βe [N/m
2
] 1.400e9 Literature Value 
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θf [rad] 1.124 Estimated 

ρ [kg/m
3
] 800 Measured 

 

Table 3.2 also shows which values were estimated and which values were 

physically measured or determined from known sources.  The values that had to 

be estimated are more difficult to measure.  Several of the estimated values used 

in the final model are discussed for justification. 

 

The Ao value, which is the cross sectional area of the orifice was estimated, due to 

the fact that actual orifice cross sectional area was not measured and not known.  

Gordic et. al [11] for the orifice area used 2.5447e-8 [m
2
] in there servovalve 

model.  This value is closer to the final value used in this model as opposed to the 

initial value used. 

 

Kt is defined as the torque motor gain.  This is the value that amplifies the current 

input.  Kt becomes a major factor in determining the response of the position of 

the spool.  This causes the Kt value to become much larger than the initial value 

that was previously given.  Additionally, since the original Kt value did not 

produce a response with magnitudes close to the supposed linear transfer function 
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response, the damping and spring constants for the torque motor, spool, and 

actuator all needed to be estimated to produce the correct response.   

 

Initially in the Simulink model the spool was only allowed to open a percentage 

of the circular port total diameter, which allows oil to enter and exit the spool and 

flow into the actuator.  This caused a major restriction on how fast, ultimately, the 

actuator could respond, due to not having the full circular port to work with.  

Knowing the diameter of the circular port and that the spool should be able to, at 

the very least, be able to full open the circular port it was decided to increase the 

spool limit to be ±8.71e-3 [m], which is equivalent to the diameter of the spool.  

Vso is the enclosed volume on each side of the spool when the spool is at xs=0.  

Knowing the cross sectional area of the spool and the overall length the spool can 

move gives the final value shown in Table 3.2 for Vso. 

 

θf is defined as the angle at which the fluid jet leaves the spool chamber.  Merritt 

[20] determined the angle to be 69°=1.2043 [rad].  θf is defined as the angle 

between the spool and the port as shown by θ in Fig. 3.12 
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Fig. 3.12:  Jet Flow Angle [20] 

From the parameter estimation, the angle was actually determined to be 

64.4°=1.1244 [rad], which is slightly smaller than the original value.  Merritt 

assumed that the variable orifice was rectangular.  The orifices in the spool were 

not entirely rectangular shaped but rather the port was circular and could account 

for the reason why there was a slight difference between values. 

 

Additionally, Fig. 3.13 shows the relationship that was developed between the 

vertical gap between the spool and chamber by Merritt [20].  The figure shows the 

relationship between the horizontal and vertical spacing of the spool.  There could 

have also been a gap between the spool and chamber.  This could also help 

account for the difference between the accepted 69° and the parameter estimation 

of 64.4°. 
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Fig. 3.13:  Flow Angle as Function of Spool Gap [20] 

Due to the fact that the step response was of a closed loop model that stabilized 

the plant, meant that the spool position varied.  The value produced from the 

parameter estimation can be thought of more as an average θf.  If an even more 

detailed response was necessary and data was available to validate, the equation 

of the curve shown in Fig. 3.13 would be used.  The equation would be solved for 

θf, and Cr would be chosen to be negligible in relation to the overall distance the 

spool moves.   
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3.4 Numerically Solving 

 

Solving differential equations are usually accomplished by solvers designed for 

specific purposes.  Hydraulic systems are typically stiff systems which require 

special attention.  There are different methods that can be taken to improve the 

simulation time and ability to solve a large number of differential equations. 

 

3.4.1 Stiff Differential Equations 

 

One of the major obstacles with running the Simulink model was to be able to 

solve the many differential equations quickly and efficiently.  Hydraulic systems 

are typically stiff in nature and, as such, have to be approached differently to 

allow for quick simulation times.  Stiff differential equations are not easily 

perceived as being stiff.  The definition of a stiff differential system is, in itself, 

still a place of continued discussion.  Generally speaking a stiff system consists of 

both slow and quickly changing variables [21]. 

 

Typically, if a system cannot be solved in a reasonable amount of time by using 

traditional solvers such as ODE45, then a stiff solver such as ODE23S or 
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ODE15S is recommended.  The standard solver used by MATLAB is the ODE45 

solver.  The ODE45 solver is based on the Runge-Kutta(4,5) function.  The 

ODE45 solver is a one-step solver, in the sense that, it only needs the solution at 

the previous time point [22].  While the ODE45 could potentially solve a stiff 

differential equation, the potential trade off would be that it would be difficult for 

the solver to solve and could take a large amount of time to solve.   

 

The solution to this dilemma is to use a stiff solver, i.e. a solver designed to 

handle stiff differential equations.  The ODE23S is specifically designed for 

solving stiff differential equations as indicated with the ‘S’.  The ODE23S solver 

is based on a Modified Rosenbrock formula of second order [22].  As is the 

ODE45 solver, the ODE23S is also a one-step solver.  Utilizing the one step 

solver can make the solver more efficient than the other stiff solver, such as the 

ODE15S. 

 

The ODE15S solver was also used in this simulation.  One of the main differences 

between the ODE15S and ODE23S solver is that the ODE15S is a multistep 

solver.  The solver can use multiple previous points in time to compute the current 

solution.  This differs from the ODE23S which only needs the previous point in 
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time.  The ODE15S also uses a numerical differentiation formula as opposed to 

the Modified Rosenbrock [22]. 

 

With the PID controller design mentioned later on all three solvers worked just as 

effectively in terms of time to solve.  The full state feedback controller worked for 

both the ode45 and ode15s solver.  The ode23s solver did not however work as 

efficiently.  In eight hours approximately 3% of the entire time had been 

simulated.  A similar behavior was experience with the PI full state feedback 

controller.  All simulations were run under default solver configurations.   

 

Chapter 4 Controller Design 

 

4.1 Chapter Overview 

 

This chapter discusses the different type of controllers designed for use with 

nonlinear plant.  All results have been simulated using the nonlinear plant model 

explained earlier.  An analysis of both the step response and the current input 

signal is discussed.   
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4.2 PID Controller 

 

4.2.1 Step Response and Input Signal Analysis 

 

The PID controller method is used extensively throughout industry for its ease of 

use, both from the standpoint of implementation and determining the 

characteristic values. 

 

A standard controller has the form 

          
  

 
     

(4.1) 

where Kp is the proportional (P) gain, Ki is the integral (I) gain, and Kd is the 

derivative (D) gain.  There are many variations of this PID controller that are 

used; one variation adds a low pass (first order) filter to the derivative term.  The 

filter is used in conjunction with the derivative term to attempt to reduce the 

amount of noise produced from the derivative portion of the PID.  The modified 

equation is shown below as Eq. (4.2) 
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    [

 

   
] 

(4.2) 

where N is the filter coefficient and is responsible for the location of the filter 

pole. 

 

Combining into one transfer function Gcf becomes, 

        
(      )   (      )     

     
 (4.3) 

The best PID that was determined based on tuning and the Ziegler-Nichols step 

response formula in the SISOTOOL from MATLAB was determined to be, 

          
    

                        

           
 (4.4) 
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From Eq. (4.4) the Kp, Ki, Kd, and N values are 3.175, 914.365, 0.002757, and 

11518.605 respectively.  With these values, Fig. 4.1 is shown below. 

 
Fig. 4.1: Reference Input and Output Simulated Response for Actuator 

Position in Relation to Input Spool Signal for 2.54e-4 [m] Step Input. 

 

As can be seen, the values were chosen to increase the response time of the 

actuator system.  The other stipulation of this system was to attempt to decrease 

the input signal while not losing the response time.  The compromise was found 

with the above controller design.  Due to the lack of information available from 

the current input signal plot, the relevance of the signal will be presented in a 
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meaningful way later on.  Additionally, when the step is increased the controller 

is still able to track even with the existence of the nonlinearities from the larger 

step input.  This is due in part to the anti-windup introduced that is only enabled 

at larger step inputs. 

 
Fig. 4.2:  Input and Output Simulated Response for Actuator Position in 

Relation to Input Spool Signal for 2.54e-3 [m] Step Input. 

 

A block diagram representation of the PID with derivative filter can be seen 

below in Fig. 4.3. 
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Fig. 4.3: Block Diagram Representation of PID with Derivative Filter 

In addition to the derivative filter attached to the derivative gain, an anti-windup 

technique can also be applied to the integral portion of the PID [23].  Tracking is 

a type of anti-windup that keeps the integral at a proper value to readily account 

for the error signal that is fed back into the closed loop system.  As shown below 

in Fig. 4.4, the signal fed into the saturation block is compared to the output of the 

saturation block.  This comparison is then multiplied by a gain of 
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Fig. 4.4: PID Controller with Anti-Windup via Tracking and Derivative 

Filter 

With this error added back to the integral signal, the integral signal can be 

reduced to acceptable values. 

 

For the actual nonlinear model the anti-windup method utilized a slightly different 
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back into the integral signal of the PID controller, but before multiplying by a 

gain of 1/5.  1/5 was determined by manually tuning the system. 

 

Near a 2.54e-4 [m] step input, the saturation inputs did not play apart, however, at 

larger inputs around 2.54e-3 [m] the saturation limit did.  Rather than simply 

disregarding the input, the signal was fed back into the PID controller, which in 

turn, helped increase the response time at larger step inputs as seen in Fig. 4.1 and 

Fig. 4.2. 

 

Table 4.1, below, shows the comparison of the current input signal to two step 

inputs with regards to different controllers.  The term large step will be used to 

define the step of 2.54e-3 [m] and small step will be used to define the step of 

2.54e-3 [m].  The current area refers to the area under the curve of the input 

signal, where all points are considered positive.  The current area is defined by the 

integral of the absolute current from [t0 t1] as shown in Eq. (4.5). 

    ∫         

  

  

 (4.5) 
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This serves as a way to gauge the effectiveness of the controller to the plant in 

terms of energy efficiency.  All analysis was performed from 0 to 0.05 seconds to 

be consistent. 

Table 4.1:  PID Current Comparison 

Controller 

Type 

Current Area [A-s] Max Current [A] 

Small step Large step Small step Large step 

Plant 1.48e-6 1.00e-5 2.54e-4 2.5e-3 

PID 3.81e-6 4.06e-5 89.0e-4 88.7e-3 

PID with 

Anti-

windup 3.81e-6 3.51e-5 89.0e-4 40.0e-3 

 

 

Table 4.2 shows the actuator response to the various controllers and non-

controller designs.  From the table, it can be seen that the anti-windup does not 

negatively impact the standard PID controller in anyway.  The addition of the 

anti-windup actually decreases the settling time of the actuator for a step input of 

2.54e-3 as compared to the open loop or standard plant design.   

Table 4.2:  PID Actuator Position Comparison 

Controller 

Type 

Actuator Percent 

Overshoot [%] Actuator Settling Time [s] 

Small step Large step Small step Large step 

Plant 0.144 8.615 1.35e-2 17.2e-3 

PID 22.170 86.407 4.59e-2 15.0e-3 

PID with 

Anti-

windup 22.170 87.598 4.59e-2 7.5e-3 
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4.2.2 Disturbance Rejection 

 

In addition to the step response of the controller design, the disturbance rejection 

ability was also analyzed.  The response for a reference input of zero, is shown 

with the disturbance in Fig. 4.5.  The disturbance is added after the controller, but 

before the input to the closed loop plant. 

 
Fig. 4.5:  Disturbance Rejection for PID with Anti-Windup Narrow Pulse 

From the figure it can be seen that it takes 0.263 [s] for the disturbance to be 

removed from the output signal by the controller.  The disturbance consists of a 
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pulse, 1e-2 [s] wide and 2.54e-5 [m] tall.  The disturbance begins at 2e-2 [s].  The 

disturbance also causes a fair amount of oscillation in the actuator position.  A 

second disturbance was also analyzed with a pulse twice as wide as the first pulse 

mentioned.  The 1e-2 [s] pulse will be referred to as the narrow pulse and the 2e-2 

[s] pulse will be referred to as the wide pulse. 

 
Fig. 4.6:  Disturbance Rejection for PID with Anti-Windup Wide Pulse 

With the wider pulse disturbance, Fig. 4.6, the settling time becomes 0.293 [s].  

The wider pulse still creates multiple oscillations before settling to the reference 
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input of zero.  Additionally the peak value has decrease with the wider pulse 

disturbance. 

 

4.3 Full State Feedback 

 

4.3.1 Step Response and Input Signal Analysis 

 

Full state feedback allows one to move the poles of a system to a better utilized 

position.  This is utilized by using gains that are multiplied by each state variable, 

which have the ability to make a system perform better or possibly become stable. 

 

The standard state space is defined as 

  ̇        

        

(4.6) 

 

where x is the state variable matrix, u is the input matrix, and A, B, C, and D are 

the matrices used to define the system of interest.   

 

For simplification the D term will be neglected from Eq. (4.6).  With state 

feedback the input u is given by 
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        [           ]  (4.7) 

where ki is the feedback gain for each state variable x required to move the poles 

of the system to a specific location. 

 

With all this being said, the system must, first and foremost, be controllable if the 

state feedback system design is to be progressed.  The controllability is 

determined to see if the controllability matrix has full rank where 

   [                  ] (4.8) 

is the controllability matrix 𝒞, and n is the number of state variables.  For full 

state feedback the observability matrix, 

   

[
 
 
 
 

 
  
   

 
     ]

 
 
 
 

 (4.9) 

where n is length of the A matrix, must have full rank in order to utilize full state 

feedback.  If this is not the case, then the states that are not observable can be 

estimated with a state estimator. 

 

With both of these events fulfilled, the full state feedback can be defined in such a 

way to increase the response of a system (moving the poles further away from the 

origin), or moving the poles to a location to influence the characteristics of the 

response, such as the percent overshoot, rise time, damping, natural frequency,…  
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The feedback gains can be determined by using the MATLAB commands place or 

acker depending on the system. 

 

The standard form for determining the desired closed loop poles    with full state 

feedback is defined as, 

           ∏       (4.10) 

where K is the full state feedback gain. 

 

The block diagram state space representation of full state feedback is shown in 

Fig. 4.7 below. 

 
Fig. 4.7: Block Diagram Representation of Full State Feedback 

A, B, C, and D are the matrices that define the system, K is the full state feedback 

gain, and  ̅ is the reference input gain.  Due to the fact that the full state feedback 

is, in effect, moving the poles of the system and affecting the physical outcome of 
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the system, the reference input gain needs to be included.  This is primarily used 

to accurately track the supplied reference input. 

 

The reference input is defined as [24], 

  ̅         (4.11) 

where 

 [
  

  
]  [

  
  

]
  

[
 
 
] (4.12) 

The reference input gain produces a response with no steady state error.   

 

The inverse matrix in Eq. (4.12) will from now on be referred to as W.  From the 

Cayle-Hamilton theorem, W, has the characteristic equation of the form 

         
               (4.13) 

where a is the coefficient of the polynomial function determined from the roots 

which are the eigenvalues of W.   The inverse matrix can then be written and 

solved as 

     (
  

  
)            

           (4.14) 

This is useful for working between the scaled state space model and the full scale 

state space model. 
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Thus, Eq. (4.12) can then be rewritten as 

 [
  

  
]     [

 
 
] (4.15) 

A more complete explanation is shown in Appendix B. 

 

Looking at the closed loop transfer function for the electrohydraulic actuator [4], 

         
    

    
 (4.16) 

where num8 is 

                          (4.17) 

and den8 is 

 

                                               

                                

          

(4.18) 

 

this equation does have large terms on the order of 10
27

 that could potentially 

cause problems during simulation.  This was fixed by using           with a 

scaling factor of sf=10000, as explained in Appendix B.  The scaled equation 

becomes, 
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 (4.19) 

where num8 is 

                         (4.20) 

and den8 is 

 

                                               

                                 

(4.21) 

 

The main issue with using Eq. (4.16), the non-scaled transfer function, is that 

errors will occur when converting to state space, and trying to determine the 

controllability and observability of the system.  Using Eq. (4.19), the 

controllability and observability matrices can be determined to have full rank.  

This demonstrates that the system is fully stable and all the states are fully 

controllable and observable. 

 

The full state feedback gain scaling can be determined by using Eq. (4.22) as 

shown below 

             
  (4.22) 

where i is the index of the feedback gain matrix starting with 1, Ks is the scaled 

feedback gain calculated with acker or place MATLAB function, and sf is the 

scaling factor used.  The scaled feedback gain Ks is determined by determining 
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the ideal placement of the poles in the scaled system knowing the poles are scaled 

by the scaling factor originally chosen.  A more detailed explanation can be found 

in Appendix B. 

 

For instances where the states are not able to be sensed, a state estimator can be 

developed.  The state estimator is shown below in Fig. 4.8 

 
Fig. 4.8:  Full State Feedback and State Estimator 

 

To determine the state estimator gain, L, the error between the estimated state 

variable  ̂ and x is used.   ̂ is defined as the state variable estimate of x.  The state 

estimator works by estimating the state based on the difference between the actual 
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plant output and the state estimator.  The estimator gain is used to position the 

poles of the subsystem so that they are faster than the actual system.   

 

Defining the state estimator as 

  ̇̂    ̂           ̂  (4.23) 

The error equation becomes, 

      ̂ (4.24) 

taking the derivative with respect to time becomes, 

  ̇   ̇   ̇̂ (4.25) 

Inserting the appropriate values, 

  ̇  [     ]  [   ̂           ̂ ] (4.26) 

After simplifying Eq. (4.26), 

  ̇            ̂          (4.27) 

Equation (4.27) governs the error in the estimation.  In order for the error to go to 

zero the characteristic equation,  

               (4.28) 

needs to have all the roots or the eigenvalues of A-LC, in the left-plane.  

Typically, the poles (eigenvalues) are chosen to be three to five times faster than 

the closed loop poles of the plant resulting from the full state feedback.  This 

allows the states to be estimated faster than the plant itself. 
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Additionally, due to the similarities between Eqs. (4.28) and (4.10) the MATLAB 

place or acker functions can be used with A´ and C´ in place of A and B, 

respectively, to calculate the state estimator gain L. 

 

The state estimator gain can be calculated similarly to the full state feedback gain 

for scaled systems as,  

             
       (4.29) 

where L is the state estimator and Ls is the scaled state estimator.  Ls is calculated 

from using the place or acker function in MATLAB with the transposed scaled A 

and C matrices.  A more detailed explanation of how this equation was developed 

and an example can be found in Appendix B. 

 

The full state feedback and estimator are designed in the scaled system.  Knowing 

that the un-scaled poles will be faster by a factor of the scaling factor used, the 

system can be easily designed in the scaled state.  Then, the full state feedback 

gain and estimator gain can be calculated.  To make this work with the un-scaled 

system Eqs. (4.22) and (4.29) are then used to scale up the full state feedback gain 

and state estimator gain.  Both of these equations have applications outside of this 

project and can be used under similar circumstances when numerical issues 

appear. 
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Implementing the above procedure for the po8n model, Eq. (4.16), using full state 

feedback, the modified poles are shown below in Table 4.3. 

Table 4.3:  Full State Feedback Pole Placement 

Original Full Scale Poles Moved Full Scale Poles 

-1.068e3±5.658e3i -1.068e3±5.658e3i 

-6.057e2±3.939e3i -7.057e2±3.939e3i 

-3.570e3±1.290e3i -3.570e3±1.291e3i 

-3.013e2±1.791e2i -6.813e2±1.091e2i 

 

Ideally, if this was a 2
nd

 order system one could look at a root locus plot that 

indicates the damping and natural frequency lines to achieve a designated 

response.  In addition, if there was not an importance on efficiency the poles that 

were far away from the origin would be placed further away from the origin to 

reduce overall impact the poles have on the system.  By moving the poles further 

away from real axis into the left half plane, the response of the poles will cause 

the system to become faster thus reducing the overall effect they have on the 

system [24].  As can be seen in Table 4.3 the poles are already very large.  From 

the movement of the poles to the final location for the closed loop response, the 

full state feedback gain becomes, 

K=[960.0 1.058e7 8.864e10 4.863e14 1.762e18 4.575e21 7.620e24 2.710e27] 

as can be seen these are very large values.   
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As Eq. (4.16) shows there is no pure integrator in the closed loop transfer 

function.  As is with the typical nature of integrators, the addition of an integrator 

to the system can help aid in better tracking of the system.   

 

With Fig. 4.9 below, the design of the full state feedback with full state estimator 

can be shown combined with the nonlinear plant. 

 

  
Fig. 4.9:  Full State Feedback with Nonlinear Model 

A saturation block was added to the output of the estimator, to eliminate the 

chance that the estimator would produce an actuator position that was larger than 

the limits of the model specified earlier. 
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After the full state feedback poles were tuned to the best possible placement, 

based on the nonlinear simulation, Table 4.4 and Table 4.5 were produced.  There 

were some simulation instances, which prevented some pole placements from 

being tried due to numerical simulation errors.  The best pole location was also 

used for the estimator gain calculation, however, the poles were moved by a 

factor of three.   

Table 4.4:  Full State Feedback Current Comparison 

Controller 

Type 

Current Area [A-s] Max Current [A] 

Small step Large step Small step Large step 

Plant 1.48e-6 10.0e-6 2.54e-4 2.5e-3 

PID with 

Anti-

windup 3.81e-6 35.1e-6 89.0e-4 40.0e-3 

Full State 

Feedback 1.49e-6 6.69e-6 9.922e-4 9.900e-3 

 

From Table 4.4 the current area is almost equivalent to the system without a 

controller for the smaller step size.  However, comparing the current area with the 

PID controller design, the input current is smaller with the full state feedback for 

all estimator pole locations.  This primarily comes from the fact that, the reference 

input gain is used to remove the steady state error.  Additionally, at the 2.54e-3 

step the current is reduced even more, to the point, where it is less than the open 

loop or standard plant design. 
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Table 4.5:  Full State Feedback Actuator Position Comparison 

Controller 

Type 

Actuator Percent 

Overshoot [%] 

Actuator Settling Time [s] 

Small step Large step Small step Large step 

Plant 0.144 8.615 13.5e-3 17.2e-3 

PID with 

Anti-

windup 22.170 87.598 45.9e-3 7.5e-3 

Full State 

Feedback 1.250 0.256 8.5e-3 5.9e-3 

 

Table 4.5 shows that the full state feedback method offers much better response 

times than the standard plant.  Additionally, the percent overshoot is decreased 

dramatically from the standard plant. 

 

The plots of the spool and actuator to the step reference input is shown below as 

Fig. 4.10 and Fig. 4.11.  Ideally, if the numerical model could simulate the 

response, the spool response would be increased to try and induce a faster 

response time.  This would also allow the circular port on the spool to be opened 

further, thus, allowing the efficiency of the flow of oil to increase. 
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Fig. 4.10:  Step Response Characteristics for Full State Feedback and 

Estimator at 2.54e-4 [m] 
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Fig. 4.11:  Step Response Characteristics for Full State Feedback and 

Estimator at 2.54e-3 [m] 

From Fig. 4.10 and Fig. 4.11, the spool response time is increased along with the 

maximum spool movement.  Both of these aspects allow the actuator to move 

faster and as can be seen provide minimal overshoot. 
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4.3.2 Disturbance Rejection 

 

The disturbance rejection is again checked for the full state feedback controller, 

and the response is shown below as Fig. 4.12.  The same pulse response is used 

for comparison between the different controllers. 

 
Fig. 4.12:  Disturbance Rejection for Full State Feedback Narrow Pulse 

From the figure, the disturbance does not cause any large oscillations, additionally 

the settling time is approximately 0.152 [s].  The wide pulse disturbance is shown 

in Fig. 4.13. 
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Fig. 4.13:  Disturbance Rejection for Full State Feedback Wide Pulse 

With the wider pulse disturbance the settling time increased to 0.154 [s].  

Additionally the peak value increase slightly due to the wider pulse disturbance.  

Both disturbances cause similar responses. 
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4.4 PI-Full State Feedback 

 

4.4.1 Step Response and Input Signal Analysis 

 

With the success of the full state feedback controller, the next logical step to 

improve the tracking, is by using an augmented PI-full state feedback model.  The 

controller design is shown below in Fig. 4.14. 

 
Fig. 4.14:  PI-Full State Feedback with Estimator 

Jelali and Kroll [2] developed this augmented PI-state feedback system.  Jelali 

and Kroll presented two tuning conditions, 
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               (4.30) 

and  

          (4.31) 

This eliminates the need for determining the pole placement.  The placement of 

the poles becomes dependent on the only tuning variable, KI. 

 

The state estimator design is calculated along the same basis as with the full state 

feedback design.  First, the equations from the block diagram are developed 

where, 

  ̅      
  

 
    ̂ (4.32) 

and defining 

      (4.33) 

  ̇       ̅ (4.34) 

  ̂    ̂ (4.35) 

  ̇̂    ̂    ̅       ̂  (4.36) 

Inserting and simplifying 

  ̇      [    
  

 
    ̂] (4.37) 
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 ̇̂    ̂   [    

  

 
    ̂]       ̂  

(4.38) 

Since the error estimate needs to go to zero as quickly as possible, the error 

equation is defined as 

  ̇   ̇   ̇̂ (4.39) 

Inserting the appropriate values, 

 

 ̇      [    
  

 
    ̂]    ̂   

 [    
  

 
    ̂]       ̂  

(4.40) 

After simplifying 

  ̇                 ̂ (4.41) 

  ̇            ̂  (4.42) 

This is the same equation used in the full state feedback example for determining 

the state estimator gain.  As such, there are not any additional values that need to 

be taken into account during the calculation of the state estimator gain L.  The 

pole locations, after taking into account the state feedback gain, can be calculated 

by looking at the eigenvalues of the A-BK matrix.  The stipulation on the state 

estimator is that the poles of the state estimator need to be faster than the poles of 

the closed loop system, to allow accurate quick estimation of the state variables.  

During the calculation of the estimator poles based on the full state feedback gain, 

both the acker and place functions were unable to accurately produce an estimator 
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gain with poles that were three times faster than the closed loop poles.  Due to the 

estimator poles only needing to be faster than the closed loop poles of the system, 

the estimator poles were then chosen to be five times faster than the original 

stable pole locations.  This satisfied the criteria that the estimator poles must be 

faster than the closed loop poles. 

 

From the tuning conditions the proportional gain, Kp, calculated to be 1, and 

tuning the integral gain, Ki, the best gain was ¼.  This resulted in the poles being 

moved to the location shown in Table 4.6. 

Table 4.6:  PI-Full State Feedback Pole Locations 

Original Full Scale Poles Moved Full Scale Poles 

-1.068e3±5.658e3i -1.066e3±5.664e3i 

-6.057e2±3.939e3i -5.950e2±3.918e3i 

-3.570e3±1.290e3i -3.592e3±1.267e3i 

-3.013e2+1.791e2i -7.295e2 

-3.013e2-1.791e2i 0 

 

From these pole locations the following step input responses were simulated at 

2.54e-4 [m] and 2.54e-3 [m].  Both are shown below as Fig. 4.15 and Fig. 4.16. 



www.manaraa.com

99 

 

 
Fig. 4.15:  PI-Full State Feedback for Step of 2.54e-4 [m] 
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Fig. 4.16:  PI-Full State Feedback for Step of 2.54e-3 [m] 

From both Fig. 4.15 and Fig. 4.16 it can be seen that the PI-Full state feedback is 

nearly identical to the standard plant model.  With this criteria, the comparison 

between the controller design and the open loop/no controller design is shown 

below as Table 4.7 and Table 4.8. 
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Table 4.7:  PI-Full State Feedback Current Comparison 

Controller 

Type 

Current Area [A-s] Max Current [A] 

Small step Large step Small step Large step 

Plant 1.48e-6 10.0e-6 2.54e-4 2.5e-3 

PID with 

Anti-windup 3.81e-6 35.1e-6 89.0e-4 40.0e-3 

Full State 

Feedback 1.49e-6 6.69e-6 9.922e-4 9.900e-3 

PI-Full State 

Feedback 1.48e-6 10.00e-6 2.54e-4 2.5e-3 

 

Table 4.8:  PI-Full State Feedback Actuator Position Comparison 

Controller 

Type 

Actuator Percent 

Overshoot [%] Actuator Settling Time [s] 

Small step Large step Small step Large step 

Plant 0.144 8.615 13.5e-3 17.2e-3 

PID with 

Anti-windup 22.170 87.598 45.9e-3 7.5e-3 

Full State 

Feedback 1.250 0.256 8.5e-3 59.0e-3 

PI-Full State 

Feedback 0.179 8.644 13.5e-3 17.2e-3 

 

From the tables, it can be seen that the PI-full state feedback, with the 

aforementioned tuning condition, does not produce results that, in any way, 

increase the response time or decrease the input current.  Additionally, the use of 

anti-windup is not necessary in this case because the integrator signal does not 

produce a large enough signal that would warrant the use of an anti-windup 

scheme. 
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4.4.2 Disturbance Rejection 

 

The disturbance rejection is again analyzed for the final controller design, the PI-

full state feedback.  The actuator position response is shown below in Fig. 4.17.   

 
Fig. 4.17:  Disturbance Rejection for PI-Full State Feedback Narrow Pulse 

From Fig. 4.17, the actuator response has a large peak value and subsequently a 

long settling time of approximately 0.219 [s].  The wider pulse disturbance is 

shown in Fig. 4.18. 
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Fig. 4.18:  Disturbance Rejection for PI-Full State Feedback Wide Pulse 

The actuator position for the wide pulse disturbance produces a larger peak value 

however the settling time decrease to 0.197 [s].  Additionally the response is 

similar for both disturbance lengths. 
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4.5 Controller Comparison 

 

As discussed above, all the controller designs have pros and cons.  The PID and 

PI-full state feedback have the additional advantage of having better tracking 

ability due to the addition of the integrator term.  This, however, is based on the 

responses causes a larger current area.  Presented again below, Table 4.9 and 

Table 4.10 show the comparison of the different controllers versus the open loop 

or standard plant design. 

 

Table 4.9:  Current Comparison of Controller Designs 

Controller 

Type 

Current Area [A-s] Max Current [A] 

Small step Large step Small step Large step 

Plant 1.48e-6 10.0e-6 2.54e-4 2.5e-3 

PID with 

Anti-windup 3.81e-6 35.1e-6 89.0e-4 40.0e-3 

Full State 

Feedback 1.49e-6 6.69e-6 9.922e-4 9.900e-3 

PI-Full State 

Feedback 1.48e-6 10.00e-6 2.54e-4 2.5e-3 

 

From Table 4.9 it can be seen that in terms of current area, the full state feedback 

design is the smallest for the 2.54e-3 [m] step input, but is only slightly larger 

than the open loop or standard plant current area for the 2.54e-4 [m] step.   



www.manaraa.com

105 

 

Table 4.10:  Actuator Comparison of Controller Designs 

Controller 

Type 

Actuator Percent 

Overshoot [%] Actuator Settling Time [s] 

Small step Large step Small step Large step 

Plant 0.144 8.615 13.5e-3 17.2e-3 

PID with 

Anti-windup 22.170 87.598 45.9e-3 7.5e-3 

Full State 

Feedback 1.250 0.256 8.5e-3 59.0e-3 

PI-Full State 

Feedback 0.179 8.644 13.5e-3 17.2e-3 

 

In addition, Table 4.10 shows the full state feedback produces the smallest percent 

overshoot and settling time.  This is true for all cases except for the percent 

overshoot with a step of 2.54e-4 [m], which has a percent overshoot of 1.25%.  

Overall the full state feedback provides the best mix of response time and current 

input reduction.  The only downside to the full state feedback is that the controller 

has difficulty tracking any inputs other than a step input.  Additionally if the filter 

gain  ̅ is not used there will be a steady state error associated with the actuator 

position. 

 

Of the three different controllers tested, the step responses are shown below for 

the step input response of 2.54e-4 [m], Fig. 4.19.  At this step response, the 

nonlinear model still exhibits the linear response from the po8n transfer function.  
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This provides a good starting point to determine whether or not the controller 

designs will be feasible with the nonlinear model. 

 

From Fig. 4.19, it can be seen that the PID with anti-windup offers the quickest 

rise time, however, the percent overshoot is the largest of all the controller 

designs.  The full state feedback controller offers the next quickest rise time and a 

very small percent overshoot.  Finally, the PI-full state feedback controller, 

closely follows the standard nonlinear model. 

 
Fig. 4.19:  Controller Comparison Actuator Response at 2.54e-4 [m] Step 
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The step response was also compared at 2.54e-3 [m], as shown in Fig. 4.20.  The 

PID with anti-windup at 2.54e-3 [m] provides an overshoot that is larger than any 

other controller design tested.  This unsatisfactory behavior necessitates looking 

into other controller designs.   

 
Fig. 4.20:  Controller Comparison Actuator Response at 2.54e-3 [m] Step 
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change from the linear region to the nonlinear region shows that the full state 

feedback offers the best response time, even with the existence of nonlinearities 

not modeled by the po8n model. 

 

In addition to the step response comparison, the disturbance response is also 

compared in Fig. 4.21 for the narrow pulse disturbance.   

 
Fig. 4.21:  Disturbance Rejection Responses Narrow Pulse 
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input the fastest and also has the smallest peak value.  Finally there is not any 

oscillation present in the full state feedback as compared to the PID with anti-

windup response.  The actuator position response for the wide pulse disturbance is 

shown in Fig. 4.22. 

 
Fig. 4.22:  Disturbance Rejection Responses Wide Pulse 
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The two previous plots have been characterized by Table 4.11 to easily analyze 

the responses according to controller type. 

Table 4.11:  Controller Comparison for Disturbance Rejection 

Controller 

Type 

Max Abs. Value [m] 

Actuator Settling 

Time [s] Abs. Error 

narrow wide narrow wide narrow wide 

PID with 

Anti-windup 7.033e-6 4.556e-6 0.263 0.293 19.0e-8 1.68e-7 

Full State 

Feedback 4.165e-6 5.534e-6 0.152 0.154 9.32e-8 1.51e-7 

PI-Full State 

Feedback 13.65e-6 20.20e-6 0.219 0.197 38.5e-8 6.18e-7 

 

The max absolute value in the table refers to the largest absolute peak observed in 

the responses.  The actuator settling time refers to the amount of time the actuator 

takes to return to the reference input in relation to the beginning of the simulation.  

Due to the fact that all the disturbances started at the same time and only the 

duration was varied allows easy comparison across each controller design.  The 

absolute error is equal to the area under the actuator position curve where all 

points are assumed positive.  This prevents any negative area from being added to 

the total area.  This is also a way to take into account the oscillations in the 

responses.  From the table, the best controller for removing the disturbance is the 

full state feedback controller.  The full state feedback produces the smallest 

settling time and absolute error.  The full state feedback also has the smallest max 
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value with the exception of the wide pulse disturbance, however, even then it is 

only slightly larger than the smallest.  All of these characteristics mentioned 

reinforce the fact that the full state feedback is the best controller for rejecting the 

disturbances analyzed.  Overall this makes the full state feedback the best design 

for the nonlinear nature of the model and also at rejecting disturbance inputs as 

shown above. 

 

Chapter 5 Conclusions and Recommendations 

 

5.1 Chapter Overview 

 

This chapter discusses the end results of this thesis along with suggestions on 

areas of improvement for continuation of this work.  The difficulties in modeling 

the system along with the model justification, controller designs, and 

implementation are also discussed. 
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5.2 Simulink Modeling 

 

The main goal of this thesis was to produce a working model of an 

electrohydraulic actuator.  There were many complications that arose during the 

creation of the Simulink model.  The primary issue was accurately representing 

all the equations, explained in Chapter 2, and also determining values for certain 

variables that were not available.  This made it difficult, especially, having to deal 

with both unknown values and debugging the Simulink model at the same time.  

The model itself came with its fair share of problems.  As explained in Section 

3.4, the hydraulic system modeled was also a nonlinear and stiff system.  This 

made simulating the model difficult, especially, in light of the previous 

statements. 

 

Parameter estimation was used to determine accurate values for the unknown 

values.  The parameter estimation was conducted against the known step 

responses of the po8n transfer function.  Additionally, the frequency response was 

compared for both the magnitude and phase of different parts of the system.  This 

is discussed in Section 3.3.1.  These justification methods and the comparison 

against literature values give validation to the model presented in this thesis.  The 

way the system was designed also allows an individual to tune the parameters to 
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match a similar electrohydraulic actuator.  As explained in the references this 

level of detail and method of modeling in Simulink is not usually accomplished 

due to the degree of difficulty.  Based on the time response and frequency 

response justification, it was shown that each subsection of the model matched 

their respective parts.  This also shows that the servovalve system can be 

described using nonlinear equations, rather than ignoring or approximating with a 

second or third order transfer function, effectively. 

 

5.3 Controller Designs 

 

Three different controller designs were designed and tested with the Simulink 

model.  A PID controller with anti-windup, full state feedback with state 

estimator, and a hybrid PI full state feedback were tested.  The ability to reject a 

pulse disturbance was also analyzed.  All three models were tested; the best 

controller that both decreased the current area and increased the response time 

was the full state feedback controller.  The full state feedback also performed the 

best at rejecting the disturbance.  The idea to introduce a proportional and integral 

term (PI) to the controller to provide better tracking was the reason behind using 

the PI full state feedback controller.  The current area was used as a way to gauge 

the efficiency of the controller.  While both the PID and hybrid PI full state 
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feedback should be better for tracking and provide better response for 

disturbances, it was found that these models did not help increase the response 

time.  The full state feedback model did increase the response time.  The 

drawback to using full state feedback is the lack of tracking with inputs other than 

step inputs.   

 

With the order of the transfer function and resulting state space representation, 

special scaled equations had to be developed for the full state feedback and state 

estimator gain.  This was developed out a matter of necessity and to allow 

simulation of the state space control methods discussed a priori.  This also has 

applications not just for this thesis but for other instances where there is a large 

number of poles, large magnitude poles, or both and pole placement needs to be 

accomplished.  This can help solve the numerical issues that can arise by way of 

traditional pole placement algorithms 
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5.4 Recommendations 

 

5.4.1 Simulation 

 

As briefly mentioned, throughout this paper simulating the response was a major 

obstacle that had to be overcome with this research.  There still are many issues 

with the solver and the way model was implemented.  The solver had difficulty 

solving very fast systems, partially, due to the saturation limits and the conditional 

statements used, which can produce zero crossing detection problems.  Future 

areas of study could consist of improving the solver and zero crossing detection 

and, additionally, finding more efficient ways of modeling the nonlinear system.   

 

This caused issues with the type of controllers that could be tested with the 

nonlinear model.  Additionally, there were limitations that prevented certain 

controller parameters from being analyzed.  Ideally, the nonlinear model should 

have been able to produce responses that were not favorable, rather than receiving 

an error message.  This also prevented an analysis of the digital controllers. 
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Finally due to the lack of experimental data, experimental analysis could be 

performed to provide further data for the Simulink model.  By doing this the 

responses could be verified at larger step inputs and provide more justification for 

the model. 

 

5.4.2 Controllers 

 

As mentioned a more detailed analysis could be performed on the digital versions 

of the controllers mentioned above.  With that being said, the nonlinear model 

would need to be improved upon to work better and be more reliable.  Controller 

designs that could be tested include H∞ controllers and other more robust 

controller designs, more adept at nonlinearities and modeling uncertainties.  

Additionally, different type of digital estimators could be analyzed for the input 

energy such as a Kalman estimator and a current estimator.  Alternatively, an 

adaptive PID controller could be designed for use with a digital analysis.  All of 

these controllers could be tested out on the nonlinear model, if the nonlinear 

model reliability was increased. 
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5.5 Conclusion 

 

In conclusion, this thesis has demonstrated the modeling and justification of an 

electrohydraulic actuator.  All aspects of the electrohydraulic actuator have been 

modeled in Simulink utilizing only standard Simulink blocks.  This allows an 

individual to look at any value of interest during the simulation of the model.  

Additionally, all of the original equations developed were used in Simulink 

without linearizing.  This allows an individual to notice the nonlinearities that are 

not available by linearized models or transfer functions for future areas of study.   

 

Table 5.1 and Table 5.2 show the comparison of the different controller designs.  

From the tables it can be seen that the regular full state feedback design offered 

the best qualities out of all the controller designs.   

Table 5.1:  Current Comparison of Controller Designs 

Controller 

Type 

Current Area [A-s] Max Current [A] 

step 2.54e-4 

[m] 

step 2.54e-3 

[m] 

step 2.54e-4 

[m] 

step 2.54e-3 

[m] 

PID with 

Anti-windup 3.81e-6 3.51e-5 0.0089 0.04 

Full State 

Feedback 1.49e-6 6.69e-6 9.922e-4 9.900e-3 

PI-Full State 

Feedback 1.48e-6 1.00e-5 2.54e-4 2.5e-3 

Plant 1.48e-6 1.00e-5 2.54e-4 2.5e-3 
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Table 5.2:  Actuator Comparison of Controller Designs 

Controller 

Type 

Actuator Percent Overshoot 

[%] Actuator Settling Time [s] 

step 2.54e-4 

[m] 

step 2.54e-3 

[m] 

step 2.54e-4 

[m] 

step 2.54e-3 

[m] 

PID with 

Anti-

windup 22.1695 87.5978 0.0459 0.0075 

Full State 

Feedback 1.2503 0.2555 0.0085 0.0059 

PI-Full 

State 

Feedback 0.1793 8.6441 0.0135 0.0172 

Plant 0.1437 8.6149 0.0135 0.0172 

 

The full state feedback controller offers the best settling time and also decreases 

the current area, as compared to, the plant or open loop design.  The full state 

feedback controller does, however, have a larger max current than the open loop 

design; however it is less than the PID controller.  Overall, the full state feedback 

offers the best response time by providing the smallest overshoot and also 

smallest settling time.  The full state feedback also offers the smallest current area 

for any of the controller designs.  The full state feedback, based on the 

disturbance analysis, also rejected the pulse disturbance the quickest of all the 

controllers mentioned.  Finally, the full state feedback is still able to work 

appropriately even at larger step inputs where nonlinearity is more of an issue, 

which is evident by the robustness that the controller exhibits. 
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Appendix A Nonlinear and Linear Step Responses 

 

 
Fig. A.1:  Step Input Response of 2.54e-3 [m] 
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Fig. A.2:  Step Input Response of 1.27e-3 [m]  
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Appendix B Scaling factor and full state feedback 

 

As mentioned before, full state feedback is a function utilized in the state space 

arrangement of a system to move the poles of a system to a better utilized 

position.  Feedback gains are utilized to move poles to a more favorable location 

in the left half plane of a real imaginary plot. 

 

Within the state space system 

  ̇        

        

(B.1) 

 

where x is the state variable matrix, u is the input matrix, and A, B, C, and D are 

the matrices used to define the system of interest.   

 

For this explanation the D term will be neglected from Eq. (B.1).  With state 

feedback the input u is given by 

        [           ]  (B.2) 

where ki is the feedback gain for each state variable x required to move the poles 

of the system to a specific location. 

 

The system must be controllable if the state feedback is going to be used.  The 

controllability is dependent on if the controllability matrix has full row rank 

where 
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   [                  ] (B.3) 

is the controllability matrix 𝒞, and n is the number of state variables.  For full 

state feedback the observability matrix, 

   

[
 
 
 
 

 
  
   

 
     ]

 
 
 
 

 (B.4) 

where n is length of the A matrix, must have full column rank in order to utilize 

full state feedback.  If this is not the case, then the states that are not observable 

can be estimated with a state estimator. 

 

With both of these events fulfilled, the full state feedback can be defined in such a 

way to increase the response of a system (moving the poles further away from the 

origin), or moving the poles to a location to influence the characteristics of the 

response, such as the percent overshoot, rise time, damping, natural frequency,…  

The feedback gains can be determined by using the MATLAB commands place or 

acker depending on the system. 

 

During the linearization and creation of a transfer function to define a system 

there is a chance the transfer function will contain large values that will cause 

simulation errors.  This can be remedied by using a scaling factor. 



www.manaraa.com

123 

 

 

To begin assume, a transfer function exists which does not exhibit any numerical 

issues.  For this example 

      
      

             
 (B.5) 

which has poles at -100, -100 and a zero at -4. 

Equation (B.5) has a standard step input as shown below in Fig. B.1. 

 
Fig. B.1:  Step Response of H(s) 

The bode plot of H(s) is shown below in Fig. B.2. 
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Fig. B.2:  Bode Plot of H(s) 

By introducing       , where the scaling factor is 10, the scaled transfer 

function will become, 

       
      

            
 (B.6) 

which has poles at -10, -10 and a zero at -0.4. 

 

The step response of       is shown in Fig. B.3 
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Fig. B.3:  Step response of H(s   

The bode plot can be seen below in Fig. B.4. 
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Fig. B.4:  Bode Plot of H(s   

Table B.1, below, shows the comparison between the primary characteristics of 

the two transfer functions. 

Table B.1: Comparison of Transfer Function with Scaling Factor 

Transfer Function Peak Time Poles/Zeros Peak Magnitude 

     0.01 [sec] P=-100, -100; Z=-4 100 [rad/sec] 

      0.1 [sec] P=-10, -10; Z=-0.4 10 [rad/sec] 

 

From Table B.1, it can be seen that in addition to making the transfer function 

more numerically stable it also slows down the system.  This is evident by the fact 

that the poles and zeros are scaled down by the scaling factor, which in turn slows 

down the system since the pole/zero combinations are closer to the origin by a 
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factor of the scaling factor used.  By looking at the rise time and peak magnitude 

this reinforces that point.   

 

Looking at the closed loop transfer function for the electrohydraulic actuator [4], 

         
    

    
 (B.7) 

where num8 is 

                          (B.8) 

and den8 is 

 

                                               

                                

          

(B.9) 

This equation does have large terms for the polynomial, on the order of 10
26

, that 

could potentially cause problems during simulation.  This was fixed by using 

           with a scaling factor of 10,000.  The scaled equation becomes, 

          
        

        
 (B.10) 

where num8 is 

                         (B.11) 

and den8 is 
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(B.12) 

 

The main issue with using Eq. (B.7), the non-scaled transfer function, is that 

errors will occur when converting to state space and trying to determine the 

controllability and observability of the system.  By using Eq. (B.10), the 

controllability and observability matrices can be determined to have full rank.  

This shows that the system is fully stable and all the states are fully controllable 

and observable.  Shown below is Fig. B.5, which shows the po8n(s) system is 

stable. 
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Fig. B.5: Step Response of po8n(s) Transfer Function 

 

The block diagram state space representation of full state feedback is shown in 

Fig. B.6 below. 

 
Fig. B.6:  Block Diagram Representation of Full State Feedback 
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A, B, C, and D are the matrices that define the system, K is the full state feedback 

gain, and  ̅ is the reference input gain.  Due to the fact that the full state feedback 

is in effect moving the poles of the system and affecting the physical outcome of 

the system, the reference input gain needs to be included.  This is primarily used 

to accurately track the supplied reference input. 

 

The reference input is defined as [24], 

  ̅         (B.13) 

where 

 [
  

  
]  [

  
  

]
  

[
 
 
] (B.14) 

The reference input gain produces a response with no steady state error.  Due to 

the size of the inverse matrix in Eq. (B.14), the Cayle-Hamilton Theorem [25] is 

used to break down the computation into more manageable sections. 

 

The inverse matrix in Eq. (B.14) will from now on be referred to as W.  The 

Cayley-Hamilton Theorem states that a square matrix of size n x n, W, has the 

characteristic equation of the form 
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               (B.15) 

where a is coefficient of the polynomial function determined from the eigenvalues 

of W.  Equation (B.15) can then be rewritten in terms of the matrix W as 

         
                (B.16) 

rewriting Eq. (B.16) 

         
               (B.17) 

             
                (B.18) 

  (
  

  
)            

             (B.19) 

     (
  

  
)            

           (B.20) 

The inverse of the matrix can then be rewritten as Eq. (B.20).  This is useful for 

working between the scaled state space model and the full scale state space 

model. 

 

Utilizing the above derivation, Eq. (B.14) can then be rewritten as 

 [
  

  
]     [

 
 
] (B.21) 
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The standard form for determining the desired closed loop poles    with full state 

feedback is defined as, 

           ∏       (B.22) 

where K is the full state feedback gain. 

The state space representation of the     , Eq. (B.5) is shown below as Eq. 

(B.23), 

  ̇  [
          

  
]   [

 
 
]   

  [    ]x 

(B.23) 

 

The scaled state space representation of      , Eq. (B.6), is shown below as Eq. 

(B.24) 

  ̇  [
       
  

]   [
 
 
]   

  [    ]x 

(B.24) 

 

The full state feedback gain scaling can be determined by using Eq. (B.25) as 

shown below 

             
  (B.25) 

where i is the index of the feedback gain matrix starting with 1, Ks is the scaled 

feedback gain calculated with acker or place MATLAB function, and sf is the 

scaling factor to slow down the system used.  The scaled feedback gain is 

calculated in the scaled system knowing the actual, un-scaled and ideal, poles will 
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be a multiple of sf.  This equation can be double checked by determining the 

eigenvalues of [A-BK] to see if the values match the desired poles. 

 

Table B.2 shows the means by which Eq. (B.25) is developed.  From the pattern 

observed between different scaling factors of 10, 100, and 1000 it can be seen that 

the ratio follows Eq. (B.25), which can be used to calculate the full state feedback 

gain using a scaled system.  The scaling ratio, K/Ks is determined by using the 

same poles, except scaled by the appropriate scaling factor and then calculating 

the ratio of the feedback gain.  The scaling ratios were developed on transfer 

functions that were known to be free of numerical issues resulting from large 

coefficients. 

Table B.2:  Scaling Factor Full State Feedback 

3
rd

 order Transfer Function 2
nd

 order Transfer Function 

Scaling Factor K/Ks Scaling Factor K/Ks 

s=10s´ [10 100 1000] s=10s´ [10 100] 

s=100s´ [100 10000 1e6] s=100s´ [100 10000] 

s-1000s´ [1000 1e6 1e9] s=1000s´ [1000 1e6] 

 

 

For instances where the states are not able to be sensed a state estimator can be 

developed.  The state estimator is shown below in Fig. B.7. 
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Fig. B.7:  Full State Feedback and State Estimator 

 

To determine the state estimator gain, L, the error between the estimated state 

variable  ̂ and x is used.   ̂ is defined as the state variable estimate of x.  The state 

estimator works by estimating the state based on the difference between the actual 

plant output and the state estimator.  The estimator gain is used to position the 

poles of the subsystem so the overall system is fast enough to be used with the 

actual plant.   

 

Defining the state estimator as 

  ̇̂    ̂           ̂  (B.26) 
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  ̇̂         ̂        (B.27) 

 

The error equation becomes, 

      ̂ (B.28) 

taking the derivative with respect to time becomes, 

  ̇   ̇   ̇̂ (B.29) 

Inserting the appropriate values, 

  ̇  [     ]  [       ̂       ] (B.30) 

  ̇                 ̂ (B.31) 

 

After simplifying Eq. (B.31), 

  ̇            ̂          (B.32) 

Equation (B.32) governs the error in the estimation.  In order for the error to go to 

zero quickly,  

               (B.33) 

or the eigenvalues of A-LC need to be in the left-plane to be considered stable.  

Typically, the poles of the state estimator are chosen to be three to five times 

faster than the closed loop poles of the plant resulting from the full state feedback.  

This allows the states to be estimated faster than the plant itself. 
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Additionally due to the similarities between Eqs. (B.33) and (B.22) the MATLAB 

place or acker can be used with A´ and C´ in place of A and B, respectively, to 

calculate the state estimator gain L. 

 

Similarly the state estimator gain can be calculated as  

           
         (B.34) 

where L is the state estimator and Ls is the scaled state estimator and i goes from 

1 to the length of Ls.  Ls is calculated from using the place or acker function in 

MATLAB with the transposed scaled A and C matrices.  Again the ideal pole 

placements are defined in the scaled system knowing that the actual poles are a 

multiple of sf faster.  Table B.3 shows the ratio that was used to create Eq. (B.34).  

This equation can be double checked by determining the eigenvalues of [A-LC] 

to see if the values match the desired estimator poles.  The ratio was developed 

the same way as the full state feedback was, with the exception of using the state 

estimator analysis, instead of the full state feedback. 

Table B.3:  Scaling Factor Full State Estimator 

3
rd

 order Transfer Function 2
nd

 order Transfer Function 

Scaling Factor L/Ls Scaling Factor L/Ls 

s=10s´ [1 0.1 0.01]´ s=10s´ [1 0.1]´ 

s=100s´ [1 0.01 0.0001]´ s=100s´ [1 0.01]´ 

s=1000s´ [1 0.001 1e-6]´ s=1000s´ [1 0.001]´ 

 

For the example above, the poles in H(s) Eq. (B.5) are moved to -200, -200.  

Using the acker function in MATLAB, the closed loop feedback gain becomes 
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[200 30000].  The step response with the feedback gain is shown below in Fig. 

B.8 

 
Fig. B.8:  Step Response H(s) with Full State Feedback Gain 

Using the scaled       function Eq. (B.6), the poles are at -10, -10.  Moving them 
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B.9. 
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Fig. B.9:  Step Response of H(s   with Full State Feedback Gain 

From Table B.4, the full state feedback gains are not scaled by the same scaling 

factor, in the example above 10 was used.  This results in a scaling of 10 for the 

first gain and 100 for the second gain relating the scaled and un-scaled full state 

feedback gains, assuming the poles are scaled by the same amount. 

Table B.4: Full State Feedback Gain Comparison 

 Original Pole Location Moved Pole 

Location 

Full State 

Feedback Gain 

     P=-100, -100; P=-200, -200; K=[200 30000] 

      P=-10, -10; P=-20, -20; K=[20 300] 

 

The full state feedback gain can easily be checked by validating Eq. (B.22).  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time [s]

A
m

p
lit

u
d
e

 

 



www.manaraa.com

139 

 

REFERENCES 

[1] Levine W., ed., 2010, The Control Handbook, Control Systems Advanced 

Methods, CRC Press. 

[2] Jelali M., and Kroll A., 2003, Hydraulic Servo-systems, Springer, London. 

[3] Poley R., 2005, “DSP control of electro-hydraulic servo actuators,” Texas 

Instruments Appl. Rep., (January), pp. 1–26. 

[4] Kim D. H., and Tsao T.-C., 2000, “A Linearized Electrohydraulic 

Servovalve Model for Valve Dynamics Sensitivity Analysis and Control 

System Design,” J. Dyn. Syst. Meas. Control, 122(1), pp. 179–187. 

[5] Troxel N. A., and Yao B., 2011, “Hydraulic Cylinder Velocity Control 

With Energy Recovery: A Comparative Simulation Study,” ASME 2011 

Dynamic Systems and Control Conference and Bath/ASME Symposium on 

Fluid Power and Motion Control, Volume 1, ASME, pp. 169–176. 

[6] Doyle J., Smith R., and Enns D., 1987, “Control of plants with input 

saturation nonlinearities,” American Control Conference, pp. 1034–1039. 

[7] Chen K., Huang M., and Fung R., 2011, “The comparisons of minimum-

energy control of the mass-spring-damper system,” 2011 9th World 

Congress on Intelligent Control and Automation, IEEE, pp. 666–671. 

[8] Kim D. H., Moulton S., and Tsao T.-C., 1999, “A Modified Tustin 

Transformation for Improved Controller Performance with Applications to 

the Electrohydraulic Actuator,” Fluid power systems and technology, pp. 

125–130. 

[9] Chatzakos P., and Papadopoulos E., 2003, “On model-based control of 

hydraulic actuators,” Proceedings of RAAD. 

[10] Maiti R., Saha R., and Watton J., 2002, “The static and dynamic 

characteristics of a pressure relief valve with a proportional solenoid-

controlled pilot stage,” Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., 

216(2), pp. 143–156. 



www.manaraa.com

140 

 

[11] Gordic D., Babic M., and Jovicic N., 2004, “Modelling of spool position 

feedback servovalves,” Int. J. Fluid Power, 5(1), pp. 37–50. 

[12] Fang J. H., Kong X. W., Zhu X., and Wei J. H., 2012, “The Modeling and 

Experimental Verification of a Servo-Proportional Valve,” Appl. Mech. 

Mater., 220-223, pp. 1018–1022. 

[13] Åman R., 2011, “Methods and Models for Accellerating Dynamic 

Simulation of Fluid Power Circuits,” Lappeenranta University of 

Technology. 

[14] Anderson R., and Li P., 2002, “Mathematical modeling of a two spool flow 

control servovalve using a pressure control pilot,” Journal of dynamic 

systems, measurement, and control. 

[15] Alleyne A., 1996, “Nonlinear force control of an electro-hydraulic 

actuator,” Japan-USA Symposium on Flexible Automation,, pp. 193–200. 

[16] Peters D., 2002, “Electrohydraulic Valves... A Technical Look,” Moog. 

[17] Ganji M., Behbahani S., and de Silva C. W., 2010, “Integrated modeling of 

an electro-hydraulic servo manipulator using linear graphs,” IEEE ICCA 

2010, IEEE, pp. 303–308. 

[18] Kim D. H., and Tsao T.-C., 1997, “Robust performance control of 

electrohydraulic actuators for camshaft machining,” ASME 1997 Fluid 

power systems and technology, IEEE, p. 142. 

[19] Anderson W., 1988, Controlling Electrohydraulic Systems, CRC Press, 

New York. 

[20] Merrit H. E., 1967, Hydraulic control systems, John Wiley & Sons, New 

York. 

[21] Chapra S., and Canale R., 2006, Numerical methods for engineers, 

McGraw Hill. 

[22] MATLAB, 2012, version 7.14 (R2012a), The MathWorks Inc., Natick. 

[23] Levine W., ed., 2010, The Control Handbook, Control Systems 

Fundamentals, CRC Press. 



www.manaraa.com

141 

 

[24] Franklin G. F., Powell J. D., and Workman M., 1998, Digital Control of 

Dynamic Systems, Ellis-Kagle Press. 

[25] Bronson R., 1970, Matrix Methods an Introduction.  

 


	List of Figures
	List of Tables
	Chapter 1 Introduction and Literature Review
	1.1 Introduction
	1.2 Literature Review
	1.2.1 Efficient Controller Design
	1.2.2 Numerical Modeling

	1.3 Problem Statement

	Chapter 2 Modeling of Electrohydraulic Servo Actuator
	2.1 Chapter Overview
	2.2 Nomenclature
	2.3 Defining Equations
	2.3.1 Torque Motor Stage
	2.3.2 Flapper-Nozzle Stage
	2.3.3 Spool Force Analysis
	2.3.4 Area Gradient
	2.3.5 Flow Continuity Through Actuator
	2.3.6 Actuator Force Balance

	2.4 Linearized Transfer Functions

	Chapter 3 Simulink Modeling
	3.1 Chapter Overview
	3.2 Simulink Modeling
	3.3 Simulink Model Justification
	3.3.1 Time Response Parameter Estimation
	3.3.2 Frequency Justification
	3.3.3 Variable Justification

	3.4 Numerically Solving
	3.4.1 Stiff Differential Equations


	Chapter 4 Controller Design
	4.1 Chapter Overview
	4.2 PID Controller
	4.2.1 Step Response and Input Signal Analysis
	4.2.2 Disturbance Rejection

	4.3 Full State Feedback
	4.3.1 Step Response and Input Signal Analysis
	4.3.2 Disturbance Rejection

	4.4 PI-Full State Feedback
	4.4.1 Step Response and Input Signal Analysis
	4.4.2 Disturbance Rejection

	4.5 Controller Comparison

	Chapter 5 Conclusions and Recommendations
	5.1 Chapter Overview
	5.2 Simulink Modeling
	5.3 Controller Designs
	5.4 Recommendations
	5.4.1 Simulation
	5.4.2 Controllers

	5.5 Conclusion
	Appendix A Nonlinear and Linear Step Responses
	Appendix B Scaling factor and full state feedback
	REFERENCES




